Chemically Functionalised Graphene FET Biosensor for the Label-free Sensing of Exosomes - Scientific Reports

A graphene field-effect transistor (gFET) was non-covalently functionalised with 1-pyrenebutyric acid N-hydroxysuccinimide ester and conjugated with anti-CD63 antibodies for the label-free detection of exosomes. Using a microfluidic channel, part of a graphene film was exposed to solution. The change in electrical properties of the exposed graphene created an additional minimum alongside the original Dirac point in the drain-source current (Ids) - back-gate voltage (Vg) curve. When phosphate buffered saline (PBS) was present in the channel, the additional minimum was present at a Vg lower than the original Dirac point and shifted with time when exosomes were introduced into the channel. This shift of the minimum from the PBS reference point reached saturation after 30 minutes and was observed for multiple exosome concentrations. Upon conjugation with an isotype control, sensor response to the highest concentration of exosomes was negligible in comparison to that with anti-CD63 antibody, indicating that the functionalised gFET can specifically detect exosomes at least down to 0.1 μg/mL and is sensitive to concentration. Such a gFET biosensor has not been used before for exosome sensing and could be an effective tool for the liquid-biopsy detection of exosomes as biomarkers for early-stage identification of diseases such as cancer.

You can read our paper here

News 2.png

The Mutational Landscape of Pancreatic and Liver Cancers, as Represented by Circulating Tumor DNA - Frontiers in Oncology

The mutational landscapes of pancreatic and liver cancers share many common genetic alterations which drive cancer progression. However, these mutations do not occur in all cases of these diseases, and this tumoral heterogeneity impedes diagnosis, prognosis, and therapeutic development. One minimally invasive method for the evaluation of tumor mutations is the analysis of circulating tumor DNA (ctDNA), released through apoptosis, necrosis, and active secretion by tumor cells into various body fluids. By observing mutations in those genes which promote transformation by controlling the cell cycle and oncogenic signaling pathways, a representation of the mutational profile of the tumor is revealed. The analysis of ctDNA is a promising technique for investigating these two gastrointestinal cancers, as many studies have reported on the accuracy of ctDNA assessment for diagnosis and prognosis using a variety of techniques.

You can read our paper here

News 1.jpg

Matrix stiffness modulates the activity of MMP-9 and TIMP-1 in hepatic stellate cells to perpetuate fibrosis - Scientific Reports

Liver fibrosis is characterised by a dense and highly cross-linked extracellular matrix (ECM) which promotes progression of diseases such as hepatocellular carcinoma. The fibrotic microenvironment is characterised by an increased stiffness, with rigidity associated with disease progression. External stiffness is known to promote hepatic stellate cell (HSC) activation through mechanotransduction, leading to increased secretion of ECM components. HSCs are key effector cells which maintain the composition of the ECM in health and disease, not only by regulating secretion of ECM proteins such as collagen, but also ECM-degrading enzymes called matrix metalloproteinases (MMPs) and their inhibitors (TIMPs). Uninhibited MMPs degrade ECM proteins to reduce external rigidity. Using fibronectin-coated polyacrylamide gels to alter substrate rigidity without altering ligand density, we show that fibrotic rigidities downregulate MMP-9 expression and secretion, and also upregulate secretion of TIMP-1, though not its expression. Using tissue immunofluorescence studies, we also report that the expression of MMP-9 is significantly decreased in activated HSCs in fibrotic tissues associated with hepatocellular carcinoma. This suggests the presence of a mechanical network that allows HSCs to maintain a fibrotic ECM, with external rigidity providing feedback which affects MMP-9 and TIMP-1 secretion, which may become dysregulated in fibrosis.

You can read our paper here


Engineering the cellular mechanical microenvironment: from bulk mechanics to the nanoscale - Journal of Cell Science

The field of mechanobiology studies how mechanical properties of the extracellular matrix (ECM), such as stiffness, and other mechanical stimuli regulate cell behaviour. Recent advancements in the field and the development of novel biomaterials and nanofabrication techniques have enabled researchers to recapitulate the mechanical properties of the microenvironment with an increasing degree of complexity on more biologically relevant dimensions and time scales. In this Review, we discuss different strategies to engineer substrates that mimic the mechanical properties of the ECM and outline how these substrates have been applied to gain further insight into the biomechanical interaction between the cell and its microenvironment.

You can read our paper here:


Repurposed tamoxifen alters the tumour microenvironment — EMBO reports

Our recent work features on the cover of EMBO reports, accompanied by two back-to-back publications that you can find here:

This work was also featured in a News & Views article in the same issue: Tamoxifen calms down the distressed PDAC stroma


Tamoxifen Mechanically Deactivates HSCs through GPER — Oncogene

Tamoxifen has been used for many years to target estrogen receptor signalling in breast cancer cells. Tamoxifen is also an agonist of the G protein-coupled estrogen receptor (GPER), a GPCR ubiquitously expressed in tissues that mediates the acute response to estrogens. Here we report that tamoxifen promotes mechanical quiescence in hepatic stellate cells (HSCs), stromal fibroblast-like cells whose activation triggers and perpetuates liver fibrosis in hepatocellular carcinomas. This mechanical deactivation is mediated by the GPER/RhoA/myosin axis and induces YAP deactivation. We report that tamoxifen decreases the levels of hypoxia-inducible factor-1 alpha (HIF-1α) and the synthesis of extracellular matrix proteins through a mechanical mechanism that involves actomyosin-dependent contractility and mechanosensing of tissue stiffness. Our results implicate GPER-mediated estrogen signalling in the mechanosensory-driven activation of HSCs and put forward estrogenic signalling as an option for mechanical reprogramming of myofibroblast-like cells in the tumour microenvironment. Tamoxifen, with half a century of safe clinical use, might lead this strategy of drug repositioning.

You can read our paper here:

Or watch our video summary below


ARTICLE: RAR-B is downregulated in HCC & cirrhosis and its expression inhibits myosin-driven activation and durotaxis in hepatic stellate cells



Our latest article, where we show how retinoic acid receptor beta (RAR-beta) is downregulated in liver cancer (HCC, hepatocellular carcinoma). We also show that expression and activation of RAR-beta inhibits cell mechanics, downregulating myosin expression and inhibiting the process of durotaxis.

Read the article here

ARTICLE: Mechanotransduction in talin through the interaction of the R8 domain with DLC1

Thumbnail for the website.jpg

Mechano-induced conformational changes and the unfolding of protein domains are cornerstones of mechanotransduction and regulate the interaction of proteins with other molecules. Talin is a prominent molecule in focal adhesions and one of the few proteins that simultaneously connects integrin receptors in the cell membrane with the actin cytoskeleton. This bridging position, owing to the cytoskeleton’s contractile nature, exposes talin to forces along its length. In this work, we studied the implications of the R8 domain unfolding in the downstream activity of deleted in liver cancer 1 (DLC1), which binds the talin R8 domain and negatively regulates Ras homolog family member A (RhoA). We created a talin mutant with the R8 domain resistant to mechanical unfolding and observed that cells expressing these talin mutants have altered patterns of focal adhesion dynamics and lower levels of actomyosin contraction. This leads to decreased traction forces and diminished cell migration. We propose a novel force-controlled molecular switch that refines the mechanism of talin-mediated focal adhesion activation, providing negative feedback during focal adhesion maturation. The broader effects of this talin-mediated mechanism need to be elucidated, as it might regulate multiple cellular events.

To read the article click this link

To see a video explaining the findings click here


PhD and Mres Graduations

CMBL congratulates our new graduates: Carlos (MRes in Bioengineering), Gulcen (Mres in Cancer Biology) and Antonios (PhD in Bioengineering). Photo from last week's graduation ceremony at the Royal Albert Hall

Graduation Photos.png

ARTICLE: Matrix stiffness induces Epithelial-Mesenchymal transition and promotes chemoresistance in pancreatic cancer cells

Our latest paper, published in Oncogenesis. 

Increased matrix rigidity associated with the fibrotic reaction is documented to stimulate intracellular signalling pathways that promote cancer cell survival and tumour growth. Pancreatic cancer is one of the stiffest of all human solid carcinomas and is characterised by a remarkable desmoplastic reaction. Here, we use mouse models genetically engineered to recapitulate human pancreatic cancer, and several pancreatic cancer cell lines as a model, to investigate the effect of matrix stiffness in epithelial-mesenchymal transition (EMT) and resistance to chemotherapeutics. We found that recapitulation of the fibrotic rigidities found in pancreatic cancer tissues promote elements of EMT including increases in vimentin expression, decreases in E-cadherin expression, nuclear localisation of β-catenin, YAP, and TAZ, and changes in cell shape towards a mesenchymal phenotype. We also report that stiffness induces chemoresistance to paclitaxel, but not to gemcitabine, both commonly used therapeutics, suggesting that environmental rigidity underlies an aspect of chemoresistance.

ARTICLE: Substrate Rigidity Controls Activation and Durotaxis in Pancreatic Stellate Cells

Our latest paper, published in Scientific Reports. Read it here.

Pancreatic Ductal Adenocarcinoma (PDAC) is an aggressive malignancy characterised by the presence of extensive desmoplasia, thought to be responsible for the poor response of patients to systemic therapies. Pancreatic stellate cells (PSCs) are key mediators in the production of this fibrotic stroma, upon activation transitioning to a myofibroblast-like, high matrix secreting phenotype. Given their importance in disease progression, characterisation of PSC activation has been extensive, however one aspect that has been overlooked is the mechano-sensing properties of the cell. Here, through the use of a physiomimetic system that recapitulates the mechanical microenvironment found within healthy and fibrotic pancreas, we demonstrate that matrix stiffness regulates activation and mechanotaxis in PSCs. We show the ability of PSCs to undergo phenotypic transition solely as a result of changes in extracellular matrix stiffness, whilst observing the ability of PSCs to durotactically respond to stiffness variations within their local environment. Our findings implicate the mechanical microenvironment as a potent contributor to PDAC progression and survival via induction of PSC activation and fibrosis, suggesting that direct mechanical reprogramming of PSCs may be a viable alternative in the treatment of this lethal disease.

ARTICLE: Cross-linking of a biopolymer-peptide co-assembly system

Molecular self-assembly is widely used for the fabrication of complex functional biomaterials to replace and/or repair any tissue or organ in the body. However, maintaining the stability and corresponding functionality of these kinds of materials in physiological conditions remains a challenge. Chemical cross-linking strategies (natural or synthetic) have been used in an effort to improve their structural integrity. Here we investigate key performance parameters of different cross-linking strategies for stabilising self-assembled materials with potential biomedical applications using a novel protein-peptide co-assembling membrane as proof-of-concept. From the different cross-linkers tested, the natural cross-linker genipin exhibited the best performance. This cross-linker successfully enhanced the mechanical properties of the system enabling the maintenance of the structure in physiological conditions without compromising its bioactivity and biocompatibility. Altogether, we provide a systematic characterization of cross-linking alternatives for self-assembling materials focused on biocompatibility and stability and demonstrate that genipin is a promising alternative for the cross-linking of such materials with a wide variety of potential applications such as in tissue engineering and drug delivery.

Find the full article here.